Skip to content
Sahithyan's S2
Sahithyan's S2 — Theory of Electricity

Two Port Networks

An electrical network with two separate ports for input and output.

Port

A pair of terminals through which current may enter or leave a network.

Parameters

Z parameters

Denoted by [z][z]. Aka. open-circuit impedance parameters. Measures impedance of the network.

[V1V2]=[z11z12z21z22][I1I2]=[z][I1I2]\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \\ \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = [z] \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}

The parameters are found by setting I1I_1 and I2I_2 to 00 in turn.

Y parameters

Denoted by [y][y]. Aka. short-circuit admittance parameters. Measures admittance of the network.

[I1I2]=[y11y12y21y22][V1V2]=[y][V1V2]\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \\ \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = [y] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}

The parameters are found by setting V1V_1 and V2V_2 to 00 in turn. Same as the inverse of the [z][z] parameters.

Transmission parameters

Denoted by TT. Aka. ABCD parameters. Measures gain and transfer impedance and transfer admittance.

Transmission parameters

[V1I1]=[ABCD][V2I2]\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \\ \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}

Here:

  • AA - Voltage gain. Open circuit transfer function. Dimensionless.
  • BB - Transfer impedance. Short circuit transfer impedance.
  • CC - Transfer admittance. Open circuit transfer admittance.
  • DD - Current gain. Short circuit current ratio. Dimensionless.

The parameters are found by setting I2I_2 and V2V_2 to 00 in turn.

Reciprocal network

A network is said to be reciprocal if ADBC=1AD-BC=1.

Hybrid parameters

[V1I2]=[h11h12h21h22][I1V2]=[h][I1V2]\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \\ \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = [h] \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}