Suppose V = V m sin ( ω t + α ) V = V_m \sin{(\omega t + \alpha)} V = V m sin ( ω t + α ) is a phasor.
V ˙ = j ω ⋅ V \dot{V} = j\omega \cdot V
V ˙ = jω ⋅ V
∫ V = 1 j ω ⋅ V \int V = \frac{1}{j\omega} \cdot V
∫ V = jω 1 ⋅ V
In star connection:
V line = 3 V phase ∠ 30 ∘ and I line = I phase V_\text{line} = \sqrt{3} V_\text{phase} \angle 30^\circ \;\; \text{and} \;\; I_\text{line} = I_\text{phase}
V line = 3 V phase ∠3 0 ∘ and I line = I phase
In delta connection:
V line = V phase and I line = 3 V phase ∠ 30 ∘ V_\text{line} = V_\text{phase} \;\; \text{and} \;\; I_\text{line} = \sqrt{3} V_\text{phase} \angle 30^\circ
V line = V phase and I line = 3 V phase ∠3 0 ∘
Suppose a linear, passive network has the input and output as:
E in = E m sin ( ω t ) and E out = A E m sin ( ω t + α ) E_\text{in} = E_m \sin{(\omega t)}\;\; \text{and} \;\;E_\text{out} = A E_m \sin{(\omega t + \alpha)}
E in = E m sin ( ω t ) and E out = A E m sin ( ω t + α )
Here A A A is the attenuation or magnification factor and α \alpha α is the phase shift.
Power on a 1-phase circuit can be easily found using 1-phase power formula:
P ph = V ph ⋅ I ph ∗ = P active + j P reactive P_\text{ph} = V_\text{ph} \cdot I^*_\text{ph} = P_\text{active} + j P_\text{reactive}
P ph = V ph ⋅ I ph ∗ = P active + j P reactive
Here I ph ∗ I^*_\text{ph} I ph ∗ is the complex conjugate of the current phasor.
Examples:
A 3-ph, 415 V, 50 Hz, 100 kVA transformer
A 3-ph, 33 kV, 50 Hz, 1 MVA, 3-wire transmission line
A 3-ph, δ \delta δ -connected, 415 V, 3.2 kW, 0.85 pf motor
Here:
Voltage specified is always line voltage
Active power or apparent power is always the total 3-ph quantity
If apparent power is given, maximum current capacity of the device can be determined
4-wire system has the neutral wire connected between the star-points of supply and load.
For motors, the power specified is the output mechanical power. The operating power factor of the motor is specified at its rated power.
Efficiency = Output Power Input Electrical Power \text{Efficiency} = \frac{\text{Output Power}}{\text{Input Electrical Power}}
Efficiency = Input Electrical Power Output Power
A technique used to handle unbalanced voltages or current sources. Any unbalanced system of three-phase circuits can be decomposed into three symmetrical components:
Positive sequence (a \mathbf{a} a )
Has same phase sequence as the original 3-phase system
Negative sequence (b \mathbf{b} b )
Has reverse phase sequence as the original 3-phase system
Zero sequence (c \mathbf{c} c )
Has equal magnitude and phase angle in all 3-phases
[ A B C ] = [ A 0 B 0 C 0 ] + [ A 1 B 1 C 1 ] + [ A 2 B 2 C 2 ] \begin{bmatrix}
A \\
B \\
C \\
\end{bmatrix}
=
\begin{bmatrix}
A_0 \\
B_0 \\
C_0 \\
\end{bmatrix}
+
\begin{bmatrix}
A_1 \\
B_1 \\
C_1 \\
\end{bmatrix}
+
\begin{bmatrix}
A_2 \\
B_2 \\
C_2 \\
\end{bmatrix}
A B C = A 0 B 0 C 0 + A 1 B 1 C 1 + A 2 B 2 C 2
The above equation can be simplified as below. Here α = 1.0 ∠ 120 ∘ \alpha = 1.0\; \angle\; 120^\circ α = 1.0 ∠ 12 0 ∘ .
[ A B C ] = [ 1 1 1 1 α 2 α 1 α α 2 ] [ A 0 B 0 C 0 ] \begin{bmatrix}
A \\
B \\
C \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & \alpha^2 & \alpha \\
1 & \alpha & \alpha^2 \\
\end{bmatrix}
\begin{bmatrix}
A_0 \\
B_0 \\
C_0 \\
\end{bmatrix}
A B C = 1 1 1 1 α 2 α 1 α α 2 A 0 B 0 C 0
[ Λ ] = [ 1 1 1 1 α 2 α 1 α α 2 ] [\Lambda]=
\begin{bmatrix}
1 & 1 & 1 \\
1 & \alpha^2 & \alpha \\
1 & \alpha & \alpha^2 \\
\end{bmatrix}
[ Λ ] = 1 1 1 1 α 2 α 1 α α 2
[ Λ ] − 1 = 1 3 [ 1 1 1 1 α α 2 1 α 2 α ] = 1 3 ⋅ [ Λ ] ∗ [\Lambda]^{-1}=
\frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
1 & \alpha & \alpha^2 \\
1 & \alpha^2 & \alpha \\
\end{bmatrix}
= \frac{1}{3} \cdot [\Lambda]^{*}
[ Λ ] − 1 = 3 1 1 1 1 1 α α 2 1 α 2 α = 3 1 ⋅ [ Λ ] ∗
S = 3 V A,0 I A,0 ∗ + 3 V A,1 I A,1 ∗ + 3 V A,2 I A,2 ∗ + S =
3V_\text{A,0} I^*_\text{A,0}+
3V_\text{A,1} I^*_\text{A,1}+
3V_\text{A,2} I^*_\text{A,2}+
S = 3 V A,0 I A,0 ∗ + 3 V A,1 I A,1 ∗ + 3 V A,2 I A,2 ∗ +
S = 3 [ V A,0 V A,1 V A,2 ] [ I A,0 ∗ I A,1 ∗ I A,2 ∗ ] S = 3
\begin{bmatrix}
V_\text{A,0} & V_\text{A,1} & V_\text{A,2} \\
\end{bmatrix}
\begin{bmatrix}
I^*_\text{A,0} \\
I^*_\text{A,1} \\
I^*_\text{A,2} \\
\end{bmatrix}
S = 3 [ V A,0 V A,1 V A,2 ] I A,0 ∗ I A,1 ∗ I A,2 ∗
S = 3 [ V Sy ] T [ I Sy ] ∗ S = 3 [V_\text{Sy}]^{T} [I_\text{Sy}]^*
S = 3 [ V Sy ] T [ I Sy ] ∗
Phase impedance matrix [ Z p ] [Z_p] [ Z p ] is defined as:
[ Z p ] = [ Z s Z m Z m Z m Z s Z m Z m Z m Z s ] [Z_p] =
\begin{bmatrix}
Z_s & Z_m & Z_m \\
Z_m & Z_s & Z_m \\
Z_m & Z_m & Z_s \\
\end{bmatrix}
[ Z p ] = Z s Z m Z m Z m Z s Z m Z m Z m Z s
Here:
Z m Z_m Z m is the impedance caused by mutual coupling between phases.
Z s Z_s Z s is the impedance in a single phase.
Sequence impedance matrix [ Z s ] [Z_s] [ Z s ] is defined as:
[ Z s ] = [ Λ ] − 1 Z p [ Λ ] [Z_s] = [\Lambda]^{-1} Z_p [\Lambda]
[ Z s ] = [ Λ ] − 1 Z p [ Λ ]