Skip to content
Sahithyan's S2
Sahithyan's S2 — Theory of Electricity

Fourier Series

Used for periodic non-sinusoidal waveforms. Suppose the periodic time is TT. The waveform can be represented as a sum of sine wave. The sine waves have integer multiple of the original frequency f0=2π/Tf_0 = 2\pi / T.

f(t)=a02+n=1[ancos(f0nt)+bnsin(f0nt)]f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \big[ a_n \cos\left(f_0 nt\right) + b_n \sin\left(f_0 nt\right) \big]

Useful trigonometric integrals

ττ+Tcos(f0nt)dt=ττ+Tsin(f0nt)dt=0\int_{\tau}^{\tau + T} \cos(f_0 nt)\, \text{d}t = \int_{\tau}^{\tau + T} \sin(f_0 nt)\, \text{d}t = 0 ττ+Tsin(f0nt)cos(f0mt)dt=0\int_{\tau}^{\tau + T} \sin(f_0 nt) \cos(f_0 mt) \, \text{d}t = 0 ττ+Tsin(f0nt)sin(f0mt)dt={T2if n=m0otherwise\int_{\tau}^{\tau + T} \sin(f_0 nt) \sin(f_0 mt) \, \text{d}t = \begin{cases} \frac{T}{2} & \text{if } n = m \\ 0 & \text{otherwise} \end{cases} ττ+Tcos(f0nt)cos(f0mt)dt={T2if n=m0otherwise\int_{\tau}^{\tau + T} \cos(f_0 nt) \cos(f_0 mt) \, \text{d}t = \begin{cases} \frac{T}{2} & \text{if } n = m \\ 0 & \text{otherwise} \end{cases}

Unknown coefficients

n0\forall n \geq 0.

an=2Tττ+Tf(t)cos(nf0t)dta_n = \frac{2}{T} \int_{\tau}^{\tau + T} f(t)\cos(nf_0t) \, \text{d}t bn=2Tττ+Tf(t)sin(nf0t)dtb_n = \frac{2}{T} \int_{\tau}^{\tau + T} f(t)\sin(nf_0t)\, \text{d}t

a02\frac{a_0}{2} is the DC offset.

Symmetry

For any waveform, subtracting the DC offset results in a symmetrical waveform.

Even Symmetry

When a wave is symmetric about the vertical axis.

f(t)=f(t)f(t) = f(-t)

The fourier series of an even waveform contains only cosine terms.

an=4Tττ+T/2f(t)cos(nf0t)dt    and    bn=0a_n = \frac{4}{T} \int_{\tau}^{\tau + T/2} f(t)\cos(nf_0t) \, \text{d}t \;\;\text{and}\;\; b_n = 0

Odd Symmetry

When a wave is symmetric about the origin.

f(t)=f(t)f(t) = -f(-t)

The fourier series of an odd waveform contains only sine terms.

an=0    and    bn=4Tττ+T/2f(t)sin(nf0t)dta_n = 0 \;\;\text{and}\;\; b_n = \frac{4}{T} \int_{\tau}^{\tau + T/2} f(t)\sin(nf_0t) \, \text{d}t

Half-Wave Symmetry

When a wave repeats itself with a reversal of sign after half a period.

f(t)=f(t+T2)=f(tT2)f(t) = -f(t + \frac{T}{2}) = -f(t - \frac{T}{2})

The coefficients can be found by:

an={4Tττ+T/2f(t)cos(nf0t)dtif n is odd0if n is evena_n = \begin{cases} \frac{4}{T} \int_{\tau}^{\tau + T/2} f(t)\cos(nf_0t) \, \text{d}t & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases} bn={4Tττ+T/2f(t)sin(nf0t)dtif n is odd0if n is evenb_n = \begin{cases} \frac{4}{T} \int_{\tau}^{\tau + T/2} f(t)\sin(nf_0t) \, \text{d}t & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}

Half-wave symmetry can co-exist with odd symmetry or even symmetry. In that case:

an={8Tττ+T/4f(t)cos(nf0t)dtif n is odd0if n is evena_n = \begin{cases} \frac{8}{T} \int_{\tau}^{\tau + T/4} f(t)\cos(nf_0t) \, \text{d}t & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases} bn={8Tττ+T/4f(t)sin(nf0t)dtif n is odd0if n is evenb_n = \begin{cases} \frac{8}{T} \int_{\tau}^{\tau + T/4} f(t)\sin(nf_0t) \, \text{d}t & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}

Frequency spectrum

Plot of harmonic number vs frequency.

Harmonic number

nnth harmonic number denotes the amplitude or strength of the nnth harmonic. Denoted as hnh_n.

hn=an2+bn2    and    phase angle=tan1(bnan)|h_n| = \sqrt{a_n^2 + b_n^2} \;\;\text{and}\;\; \text{phase angle} = \tan^{-1}\left(\frac{b_n}{a_n}\right)

RMS

yrms2=a02+i=0[ai,rms2+bi,rms2]y_{\text{rms}}^2 = a_0^2 + \sum_{i=0}^\infty \Big[ a_{i,\text{rms}}^2 + b_{i,\text{rms}}^2 \Big]

Total Harmonic Distortion

A measurement of the distortion present in the waveform compared to the original waveform.

yTHD=1h1i=2hi2y_{\text{THD}} = \frac{1}{h_1} \sqrt{\sum_{i=2}^\infty h_i^2}

Here hih_i is the rms of iith harmonic. DC offset is ignored. Usually given as a percentage.

Complex form

f(t)=n=Cnejnf0tf(t) =\sum_{n=-\infty}^{\infty} C_n e^{jnf_0t}

Here CnC_n can be found by:

Cn=AnjBn2=1Tττ+Tf(t)ejnf0tdtC_n = \frac{A_n - jB_n}{2} =\frac{1}{T} \int_{\tau}^{\tau + T} f(t)e^{-jnf_0 t}\,\text{d}t