Skip to content
Sahithyan's S2
Sahithyan's S2 — Methods of Mathematics

Fixed Point Method

The number pp is a fixed point of the function ff iff f(p)=pf(p) = p.

Existence and uniqueness

If gC[a,b]g \in C[a,b] and g(x)[a,b]  x[a,b]g(x) \in [a,b]\;\forall x \in [a,b], then gg has at least one fixed point in [a,b][a,b].

If in addition, g(x)g'(x) exists on (a,b)(a,b) and k (0,1)\exists k\ \in (0,1) such that:

g(x)k    x(a,b)\Big\rvert g'(x)\Big\rvert \leq k \;\; \forall x \in (a,b)

Then gg has a unique fixed point in (a,b)(a,b).

Iteration algorithm

Start with p0p_0 (arbitrary point). Iterate using pn+1=g(pn)p_{n+1} = g(p_n) until convergence. Convergence is guaranteed if the fixed point exists and is unique.

Implementation

def fixed_point(g, p0, tolerance=1e-6, max_iteration_count=100):
p = p0
for _ in range(max_iteration_count):
p_new = g(p)
if abs(p_new - p) < tolerance:
return p_new
p = p_new
raise ValueError("Fixed point not found")

Fixed point theorem

If:

  • gC[a,b]g \in C[a,b]
  • x[a,b],  g(x)[a,b]\forall x \in [a,b],\; g(x) \in [a,b]
  • gg' exists on (a,b)(a,b)
  • k(0,1)\exists k \in (0,1) and g(x)k  x(a,b)\big\lvert g'(x) \big\rvert \le k\; \forall x \in (a,b)

Then both equations mentioned below hold:

pnpknmax{p0a,bp0}\Big\lvert p_n - p \Big\rvert \le k^n \max\Big\{p_0 - a, b - p_0\Big\} pnpkn1kp1p0\lvert p_n - p \rvert \le \frac{k^n}{1-k} \lvert p_1 - p_0 \rvert