Analogous to the one-dimensional Taylor’s theorem .
Suppose f : R 2 → R f: \mathbb{R}^2 \to \mathbb{R} f : R 2 → R If  all partial derivatives of order n n n n + 1 n+1 n + 1 then :
f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 ) + ∑ i = 1 n 1 i ! ( h ∂ ∂ x + k ∂ ∂ y ) i f ∣ ( x 0 , y 0 ) + R n f(x_0 + h, y_0 + k) = f(x_0, y_0) +
\sum_{i=1}^{n} \frac{1}{i!} \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^i f \Bigg|_{(x_0, y_0)} +
R_n
 f ( x 0  + h , y 0  + k ) = f ( x 0  , y 0  ) + i = 1 ∑ n  i ! 1  ( h ∂ x ∂  + k ∂ y ∂  ) i f  ( x 0  , y 0  )  + R n  Here
R n = 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ∣ ( x 0 + h , y 0 + k ) R_n = \frac{1}{(n+1)!} \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f \Bigg|_{(x_0+h, y_0+k)}
 R n  = ( n + 1 )! 1  ( h ∂ x ∂  + k ∂ y ∂  ) n + 1 f  ( x 0  + h , y 0  + k )  And θ ∈ ( 0 , 1 ) \theta \in (0,1) θ ∈ ( 0 , 1 )   
( h ∂ ∂ x + k ∂ ∂ y ) n \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^n
 ( h ∂ x ∂  + k ∂ y ∂  ) n Taylor Series 
f ( x , y ) = ∑ n = 0 ∞ { 1 n ! ∑ k = 0 n ( n k ) ∂ n f ∂ x n − k ∂ y k ∣ ( x 0 , y 0 ) ( x − x 0 ) n − k ( y − y 0 ) k } f(x, y) = \sum_{n=0}^{\infty} \left\{ \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} \frac{\partial^n f}{\partial x^{n-k} \partial y^k} \bigg|_{(x_0, y_0)} (x - x_0)^{n-k} (y - y_0)^k \right\}
 f ( x , y ) = n = 0 ∑ ∞  { n ! 1  k = 0 ∑ n  ( k n  ) ∂ x n − k ∂ y k ∂ n f   ( x 0  , y 0  )  ( x − x 0  ) n − k ( y − y 0  ) k } Linear & quadratic approximations 
Linear approximation for a function f f f   
f ( x 0 + h , y 0 + k ) ≈ f ( x 0 , y 0 ) + h ∂ f ∂ x ∣ ( x 0 , y 0 ) + k ∂ f ∂ y ∣ ( x 0 , y 0 ) f(x_0 + h, y_0 + k) \approx f(x_0, y_0) + h\frac{\partial f}{\partial x} \bigg|_{(x_0, y_0)} + k\frac{\partial f}{\partial y} \bigg|_{(x_0, y_0)}
 f ( x 0  + h , y 0  + k ) ≈ f ( x 0  , y 0  ) + h ∂ x ∂ f   ( x 0  , y 0  )  + k ∂ y ∂ f   ( x 0  , y 0  )  Quadratic approximation for a function f f f   
f ( x 0 + h , y 0 + k ) ≈ f ( x 0 , y 0 ) + h ∂ f ∂ x ∣ ( x 0 , y 0 ) + k ∂ f ∂ y ∣ ( x 0 , y 0 ) + 1 2 ( h 2 ∂ 2 f ∂ x 2 ∣ ( x 0 , y 0 ) + 2 h k ∂ 2 f ∂ x ∂ y ∣ ( x 0 , y 0 ) + k 2 ∂ 2 f ∂ y 2 ∣ ( x 0 , y 0 ) ) f(x_0 + h, y_0 + k)
\approx f(x_0, y_0) +
h\frac{\partial f}{\partial x} \bigg|_{(x_0, y_0)} +
k \frac{\partial f}{\partial y} \bigg|_{(x_0, y_0)} +
\frac{1}{2} \left(h^2 \frac{\partial^2 f}{\partial x^2} \bigg|_{(x_0, y_0)} + 2hk \frac{\partial^2 f}{\partial x \partial y} \bigg|_{(x_0, y_0)} + k^2 \frac{\partial^2 f}{\partial y^2} \bigg|_{(x_0, y_0)} \right)
 f ( x 0  + h , y 0  + k ) ≈ f ( x 0  , y 0  ) + h ∂ x ∂ f   ( x 0  , y 0  )  + k ∂ y ∂ f   ( x 0  , y 0  )  + 2 1  ( h 2 ∂ x 2 ∂ 2 f   ( x 0  , y 0  )  + 2 hk ∂ x ∂ y ∂ 2 f   ( x 0  , y 0  )  + k 2 ∂ y 2 ∂ 2 f   ( x 0  , y 0  )  )