Skip to content
Sahithyan's S2
Sahithyan's S2 — Methods of Mathematics

Hessian Matrix

Suppose f:RnRf: \mathbb{R}^n \to \mathbb{R} is a twice partially differentiable function. The Hessian matrix of ff is the matrix of second partial derivatives.

H(f)=D2f=(2fx122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn2)H(f) = D^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}

At a point xRnx \in \mathbb{R}^n is the n×nn \times n matrix of second partial derivatives of ff at xx. Denoted by H(f)(x)H(f)(x).