Skip to content
Sahithyan's S2
Sahithyan's S2 — Methods of Mathematics

Double Integrals

Suppose ff is defined on R=[a,b]×[c,d]R = [a,b] \times [c,d].

The double integral of ff over RR is defined as:

Rf(x,y)=limm,ni=1mj=1nf(xij,yij)ΔxΔy\iint_R f(x,y) = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^{*},y_{ij}^*) \Delta x \Delta y

if the limit exists.

Properties

D(f+g)dA=DfdA+DgdA\iint_D (f + g)\,\text{d}A = \iint_D f\,\text{d}A + \iint_D g\,\text{d}A DcfdA=c(DfdA)\iint_D cf\,\text{d}A = c\left(\iint_D f\,\text{d}A\right)

If fgf \ge g on all points of DD:

DfdADgdA\iint_D f\,\text{d}A \ge \iint_D g\,\text{d}A

If DD is the union of non-overlapping regions D1D_1 and D2D_2:

DfdA=D1fdA+D2fdA\iint_D f\,\text{d}A = \iint_{D_1} f\,\text{d}A + \iint_{D_2} f\,\text{d}A

Change of variables

Suppose that TT is a C1C^1 transformation whose Jacobian is nonzero and that it maps a region SS in the uvuv− plane onto a region RR in the xyxy−plane. and that ff is continuous on RR and that RR and SS are type I or type II planar regions. And also that TT is one-to-one, except perhaps on the boundary of SS. Then:

Rf(x,y)dA=Sf(x(u,v),y(u,v))(x,y)(u,v)dA\iint_R f(x,y)\,\text{d}A = \iint_S f\big(x(u,v), y(u,v)\big) \left|\frac{\partial(x, y)}{\partial(u, v)}\right|\,\text{d}A

Derivative under double integral

Suppose ff be a function with continuous second partial derivatives on a rectangular domain RR with vertices (x1,y1),(x1,y2),(x2,y2)(x_1, y_1),(x_1, y_2),(x_2, y_2) and (x2,y1)(x_2, y_1), where x1<x2x_1 < x_2 and y1<y2y_1 < y_2.

RfxydA=f(x1,y1)f(x2,y1)+f(x2,y2)f(x1,y2)\iint_R f_{xy} \,\text{d}A = f(x_1, y_1) - f(x_2, y_1) + f(x_2, y_2) - f(x_1, y_2)

Fubini’s Theorem

If ff is continuous on R=[a,b]×[c,d]R = [a,b] \times [c,d], then:

Rf(x,y)dA=abcdf(x,y)  dydx=cdabf(x,y)  dxdy\iint_R f(x,y)\,\text{d}A = \int_a^b \int_c^d f(x,y)\;\text{d}y\,\text{d}x = \int_c^d \int_a^b f(x,y)\;\text{d}x\,\text{d}y

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Non-recatangular regions

ff is continuous and DD lies between two continuous functions of xx.

Suppose D=[a,b]×[g1(x),g2(x)]D = [a,b] \times [g_1(x), g_2(x)].

Df(x,y)dA=abg1(x)g2(x)f(x,y)  dydx\iint_D f(x,y)\,\text{d}A =\int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)\;\text{d}y\,\text{d}x

Similarily it can be extended when two continuous functions of yy are given.

In Polar Coordinates

ff is continuous and DD lies between two continuous functions of rr.

Suppose D=[a,b]×[g1(r),g2(r)]D = [a,b] \times [g_1(r), g_2(r)].

Df(x,y)dA=abg1(r)g2(r)f(r,θ)  drdθ\iint_D f(x,y)\,\text{d}A =\int_a^b \int_{g_1(r)}^{g_2(r)} f(r,\theta)\;\text{d}r\,\text{d}\theta

Common Shapes

All the common shapes in polar coordinates are explained below. They are defined in cos\cos. The same version can be adapted for sin\sin.

Archimedes’ Spiral

r=θr=\theta

Gradually spirals outwards from (0,0)(0,0) to (0,2π)(0, 2\pi).

Circle

r=acosθr=a\cos\theta

Center point is (a/2,0)(a/2,0). Radius is aa.

Cardioid

a0a\neq 0.

r=a+bcosθr=a+b\cos\theta

Goes through (b+a,0)(b+a,0) and (ba,0)(b-a,0).

ShapeWhen
Cardioida=ba=b
One-loop Limaconb<a<2bb \lt a \lt 2b
Inner-loop Limacona<ba \lt b

Lemniscate

Suppose a0a\neq 0.

r2=a2cos(2θ)r^2 = a^2 \cos(2\theta)

Resembles the infinity symbol. Center point is (0,0)(0,0). Width 2a2a. Height b2\frac{b}{\sqrt{2}}.

Rose

r=acos(nθ)r = a \cos (n\theta)
nNumber of petals
oddnn
even2n2n

All the above-mentioned functions are visualized on Common Polar Functions - Geogebra.

Definition in Polar Coordinates

Rf(x,y)dAxy=Rf(rcosθ,rsinθ)rdArθ=θ=αβr=abf(rcosθ,rsinθ)  drdθ\iint_R f(x,y)\,\text{d}A_{xy}= \iint_R f(r \cos\theta, r \sin\theta)r \,\text{d}A_{r\theta}= \int_{\theta=\alpha}^\beta \int_{r=a}^{b} f(r\cos\theta,r\sin\theta)\;\text{d}r\,\text{d}\theta

ff is continuous on a polar region DD which lies in [α,β]×[h1(θ),h2(θ)][\alpha,\beta]\times[h_1(\theta),h_2(\theta)].

Df(x,y)dA=abg1(x)g2(x)f(x,y)  dydx\iint_D f(x,y)\,\text{d}A =\int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)\;\text{d}y\,\text{d}x