Suppose f f f is defined on R = [ a , b ] × [ c , d ] R = [a,b] \times [c,d] R = [ a , b ] × [ c , d ] .
The double integral of f f f over R R R is defined as:
∬ R f ( x , y ) = lim m , n → ∞ ∑ i = 1 m ∑ j = 1 n f ( x i j ∗ , y i j ∗ ) Δ x Δ y \iint_R f(x,y) = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^{*},y_{ij}^*) \Delta x \Delta y
∬ R f ( x , y ) = m , n → ∞ lim i = 1 ∑ m j = 1 ∑ n f ( x ij ∗ , y ij ∗ ) Δ x Δ y
if the limit exists.
∬ D ( f + g ) d A = ∬ D f d A + ∬ D g d A \iint_D (f + g)\,\text{d}A =
\iint_D f\,\text{d}A +
\iint_D g\,\text{d}A
∬ D ( f + g ) d A = ∬ D f d A + ∬ D g d A
∬ D c f d A = c ( ∬ D f d A ) \iint_D cf\,\text{d}A =
c\left(\iint_D f\,\text{d}A\right)
∬ D c f d A = c ( ∬ D f d A )
If f ≥ g f \ge g f ≥ g on all points of D D D :
∬ D f d A ≥ ∬ D g d A \iint_D f\,\text{d}A \ge
\iint_D g\,\text{d}A
∬ D f d A ≥ ∬ D g d A
If D D D is the union of non-overlapping regions D 1 D_1 D 1 and D 2 D_2 D 2 :
∬ D f d A = ∬ D 1 f d A + ∬ D 2 f d A \iint_D f\,\text{d}A =
\iint_{D_1} f\,\text{d}A +
\iint_{D_2} f\,\text{d}A
∬ D f d A = ∬ D 1 f d A + ∬ D 2 f d A
Suppose that T T T is a C 1 C^1 C 1 transformation whose Jacobian is nonzero and that it maps a region
S S S in the u v uv uv − plane onto a region R R R in the x y xy x y −plane. and that f f f is continuous on R R R and that R R R and S S S are type I or type II planar regions. And also that T T T is one-to-one, except perhaps on the boundary of S S S . Then :
∬ R f ( x , y ) d A = ∬ S f ( x ( u , v ) , y ( u , v ) ) ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ d A \iint_R f(x,y)\,\text{d}A =
\iint_S f\big(x(u,v), y(u,v)\big) \left|\frac{\partial(x, y)}{\partial(u, v)}\right|\,\text{d}A
∬ R f ( x , y ) d A = ∬ S f ( x ( u , v ) , y ( u , v ) ) ∂ ( u , v ) ∂ ( x , y ) d A
Suppose f f f be a function with continuous second partial derivatives on a rectangular
domain R R R with vertices ( x 1 , y 1 ) , ( x 1 , y 2 ) , ( x 2 , y 2 ) (x_1, y_1),(x_1, y_2),(x_2, y_2) ( x 1 , y 1 ) , ( x 1 , y 2 ) , ( x 2 , y 2 ) and ( x 2 , y 1 ) (x_2, y_1) ( x 2 , y 1 ) , where x 1 < x 2 x_1 < x_2 x 1 < x 2 and
y 1 < y 2 y_1 < y_2 y 1 < y 2 .
∬ R f x y d A = f ( x 1 , y 1 ) − f ( x 2 , y 1 ) + f ( x 2 , y 2 ) − f ( x 1 , y 2 ) \iint_R f_{xy} \,\text{d}A = f(x_1, y_1) - f(x_2, y_1) + f(x_2, y_2) - f(x_1, y_2)
∬ R f x y d A = f ( x 1 , y 1 ) − f ( x 2 , y 1 ) + f ( x 2 , y 2 ) − f ( x 1 , y 2 )
If f f f is continuous on R = [ a , b ] × [ c , d ] R = [a,b] \times [c,d] R = [ a , b ] × [ c , d ] , then:
∬ R f ( x , y ) d A = ∫ a b ∫ c d f ( x , y ) d y d x = ∫ c d ∫ a b f ( x , y ) d x d y \iint_R f(x,y)\,\text{d}A =
\int_a^b \int_c^d f(x,y)\;\text{d}y\,\text{d}x =
\int_c^d \int_a^b f(x,y)\;\text{d}x\,\text{d}y
∬ R f ( x , y ) d A = ∫ a b ∫ c d f ( x , y ) d y d x = ∫ c d ∫ a b f ( x , y ) d x d y
More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of
smooth curves, and the iterated integrals exist.
f f f is continuous and D D D lies between two continuous functions of x x x .
Suppose D = [ a , b ] × [ g 1 ( x ) , g 2 ( x ) ] D = [a,b] \times [g_1(x), g_2(x)] D = [ a , b ] × [ g 1 ( x ) , g 2 ( x )] .
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x \iint_D f(x,y)\,\text{d}A =\int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)\;\text{d}y\,\text{d}x
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x
Similarily it can be extended when two continuous functions of y y y are given.
f f f is continuous and D D D lies between two continuous functions of r r r .
Suppose D = [ a , b ] × [ g 1 ( r ) , g 2 ( r ) ] D = [a,b] \times [g_1(r), g_2(r)] D = [ a , b ] × [ g 1 ( r ) , g 2 ( r )] .
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( r ) g 2 ( r ) f ( r , θ ) d r d θ \iint_D f(x,y)\,\text{d}A =\int_a^b \int_{g_1(r)}^{g_2(r)} f(r,\theta)\;\text{d}r\,\text{d}\theta
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( r ) g 2 ( r ) f ( r , θ ) d r d θ
All the common shapes in polar coordinates are explained below. They are defined in cos \cos cos . The same version can be adapted for sin \sin sin .
r = θ r=\theta
r = θ
Gradually spirals outwards from ( 0 , 0 ) (0,0) ( 0 , 0 ) to ( 0 , 2 π ) (0, 2\pi) ( 0 , 2 π ) .
r = a cos θ r=a\cos\theta
r = a cos θ
Center point is ( a / 2 , 0 ) (a/2,0) ( a /2 , 0 ) . Radius is a a a .
a ≠ 0 a\neq 0 a = 0 .
r = a + b cos θ r=a+b\cos\theta
r = a + b cos θ
Goes through ( b + a , 0 ) (b+a,0) ( b + a , 0 ) and ( b − a , 0 ) (b-a,0) ( b − a , 0 ) .
Shape When Cardioid a = b a=b a = b One-loop Limacon b < a < 2 b b \lt a \lt 2b b < a < 2 b Inner-loop Limacon a < b a \lt b a < b
Suppose a ≠ 0 a\neq 0 a = 0 .
r 2 = a 2 cos ( 2 θ ) r^2 = a^2 \cos(2\theta)
r 2 = a 2 cos ( 2 θ )
Resembles the infinity symbol. Center point is ( 0 , 0 ) (0,0) ( 0 , 0 ) . Width 2 a 2a 2 a . Height b 2 \frac{b}{\sqrt{2}} 2 b .
r = a cos ( n θ ) r = a \cos (n\theta)
r = a cos ( n θ )
n Number of petals odd n n n even 2 n 2n 2 n
All the above-mentioned functions are visualized on Common Polar Functions - Geogebra .
∬ R f ( x , y ) d A x y = ∬ R f ( r cos θ , r sin θ ) r d A r θ = ∫ θ = α β ∫ r = a b f ( r cos θ , r sin θ ) d r d θ \iint_R f(x,y)\,\text{d}A_{xy}=
\iint_R f(r \cos\theta, r \sin\theta)r \,\text{d}A_{r\theta}=
\int_{\theta=\alpha}^\beta \int_{r=a}^{b} f(r\cos\theta,r\sin\theta)\;\text{d}r\,\text{d}\theta
∬ R f ( x , y ) d A x y = ∬ R f ( r cos θ , r sin θ ) r d A r θ = ∫ θ = α β ∫ r = a b f ( r cos θ , r sin θ ) d r d θ
f f f is continuous on a polar region D D D which lies in [ α , β ] × [ h 1 ( θ ) , h 2 ( θ ) ] [\alpha,\beta]\times[h_1(\theta),h_2(\theta)] [ α , β ] × [ h 1 ( θ ) , h 2 ( θ )] .
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x \iint_D f(x,y)\,\text{d}A =\int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)\;\text{d}y\,\text{d}x
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x