Skip to content
Sahithyan's S2
Sahithyan's S2 — Methods of Mathematics

Continuity

Suppose ff is a real-valued function defined on DR2D \subset \mathbb{R}^2.

ff is continuous at (a,b)D(a,b) \in D iff:

ϵ>0  δ>0  (x,y)D  ((xa)2+(yb)2<δ    f(x,y)f(a,b)<ϵ)\forall{\epsilon>0}\; \exists{\delta>0}\; \forall{(x,y)\in D}\; \bigg(\sqrt{(x-a)^2 + (y-b)^2}<\delta\implies{|f(x,y)-f(a,b)|<\epsilon}\bigg)
  • If (a,b)D(a,b)\in D is an isolated point of DD, then ff is continuous at (a,b)(a,b).
  • Otherwise, for ff to be continuous at (a,b)D(a,b) \in D:
    • f(a,b)f(a,b) must be well defined
    • lim(x,y)(a,b)f(x,y)\lim_{(x,y)\to{(a,b)}} {f(x,y)} must exists
    • lim(x,y)(a,b)f(x,y)=f(a,b)\lim_{(x,y)\to{(a,b)}} {f(x,y)} = f(a,b)